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The symmetric simple exclusion process where infinitely many particles move 
randomly on ~, jump with equal probability on nearest-neighbor sites, and 
interact by simple exclusion is considered. It is known that the only extremal 
invariant measures are Bernoulli, that each measure, in a suitable class, after a 
"macroscopic" time is locally described, at a zero-order approximation, by a 
Bernoulli measure with parameter depending on macroscopic space and time, 
and that the so-defined equilibrium profile satisfies the heat equation. Small 
deviations from local equilibrium in the hydrodynamical limit are investigated. 
It is proven, under suitable assumptions, that at first order the state is Gibbs 
with one- and two-body potentials whose strength depends only on macroscopic 
space and time and on the equilibrium profile. More precisely, the one-body 
potential is linear (on the microscopic positions of the particles) and propor- 
tional to the macroscopic space gradient of the equilibrium parameter at that 
time, so that Fourier law holds. The two-body potential varies on a macroscopic 
scale and does not depend on the microscopic positions of the particles; it is 
given by the value of the covariance of the Gaussian "macroscopic density 
fluctuation field." 

KEY WORDS: Hydrodynamical behavior of microscopic systems; sto- 
chastic dynamics; simple exclusion process; local equilibrium; Fourier law. 

I .  I N T R O D U C T I O N  

In  this p a p e r  we s tudy  a s tochas t i c  p rocess  wh ich  desc r ibes  a sys tem of 

inf in i te ly  m a n y  " p o i n t  h a r d  c o r e s "  r a n d o m l y  m o v i n g  on  Z a n d  i n t e r ac t i ng  

by  s imple  exc lus ion ,  i.e., the  s y m m e t r i c  s imple  exc lus ion  process .  W e  
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underline some properties exhibited by this process which mimic the 
hydrodynamical behavior of real physical systems. They might be taken as 
a first step toward an abstract formulation of "hydrodynamical behavior" 
and could maybe provide a useful tool in the qualitative analysis of 
dynamical systems with infinitely many components (particles). 

Along these lines many results have recently appeared which concern 
both the model we consider (1-3) and others. (4 ~2) The system we study is 
the simplest among the above ones and so it allows a more detailed 
analysis; we exploit this by looking at the "small deviations from local 
equilibrium." We find that they can be described in a very simple way since 
the states are (locally) Gibbs with space-time dependent potentials repre- 
senting the deviations from equilibrium; we are indebted to T. Brox and 
H. Rost for suggesting this line of approach. 

In Section 2 we review the features of the model and we underline the 
analogies with the hydrodynamical properties exhibited by physical sys- 
tems. We also describe rather informally the results we have obtained, 
precise statements are given in Section 3, and their proofs can be found in 
Sections 4 and 5. 

2. THE HYDRODYNAMICAL FEATURES OF THE MODEL 

The simple exclusion model has been extensively studied both from an 
"ergodic" point of view (see Ref. 13, for instance) and from a hydrodynam- 
ical one (see Refs. 1-3). The system describes infinitely many particles in 7/, 
{0,1} ~ is the configuration space, and ~(x), x ET/, is the occupatio n 
random variable at site x. The time evolution is given by a Markov process 
as follows: each particle waits, independently of the others, for a Poisson 
time of mean 1, then decides to jump, at its right or left with probability �89 
The jump actually takes )lace if and only if the chosen site is empty (see 
Ref. 13 and Section 3 of the present paper for a precise formulation). 

P.O. Equilibrium States. The first main feature of the model is that 
there are infinitely many invariant probability measures, and they form a 
convex compact (in the weak topology) set with extremal points, $,  which 
are the Bernoulli measures on (0, 1} z (see Ref. 13). Each element corre- 
spond to a point p ~ [0, 1] via the correspondence 

vp ~ E ,  v e ( { ~ ( x ) = l } ) = p  

p is the equilibrium parameter; it plays the role that density, energy, and 
mean velocity have in a real physical system. 

P.1. Local Equilibrium. Let /~ denote a probability measure on {0, 
1} z and ~t = TtP~ its time evolution according to the simple exclusion 
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Markov process; then for/z in a suitable class of initial measures 

limd(Tdz, g) = 0 (2.1) 

where d is a metric on the probability measures given by 

d( #, v) = sup d(Dxl~, Dxv) 
x ~ 7 /  

D x is the space translation as acting on measures, d is a distance equivalent 
to the weak topology, namely, 

d ( ~ , v )  = ~ 2-nllt~lA,,~,lAnll 
n = l  

where II'll is the variational distance, An = ( -  n . . . . .  n} and ~[A n is the 
retativization of/L to the algebra generated by the ~/(x), x E A n. 

Equation (2.1) states that the system observed in a fixed (finite) region 
approaches equilibrium. It does not necessarily converge to a point of g 
and it might keep wandering closer and closer to $.  The equilibrium of 
another region may initially be different; however, a common behavior is 
established after some time which depends on the mutual distance between 
the regions. Only when observations are suitably moved away in space 
along with time, differences might keep showing up. An equivalent way 
(more convenient for the sequel) to state Eq. (2.1) is the following: for every 
(suitable) /x there exists p(x,t[l~):7/• R+ o [ 0 ,  1] such that for all n and 
xl . . . . .  x n (up below is the Bernoulli measure with parameterp)  

lim sup ]/z,({7/(x/+ x) = 1,i = 1 . . . . .  n}) 
t .'.oo x E ~ '  

-up(~,,l~)({71(xi) = 1,i = 1 . . . . .  n}) I = 0 (2.1a) 

Notice that Eq. (2.1a) does not determine uniquely p(x, tllz), since if 
p'(x, t[ it) is such that 

lim sup [p(x, t[ i z) - p'(x, t[/x)[ = 0 
t--> oo x ~ / /  

thenp '  fulfills Eq. (2.1a) i fp  does it. 
In the simple exclusion process condition P. 1 holds for a class of initial 

measures whose space correlations decay at infinity. (~'2) 
P.2. Hydrodynamlcai Scaling. The hydrodynamical equations are in 

a first approximation invariant under suitable space and time rescalings. 
We want to assume that this is going to hold in some sense also for the 
microscopic states of the system, states whose local equilibrium structures 
differ for a space scaling; after that space and a suitable time rescalings 
should behave the same. This is, however, to be regarded as an "ideal 
limiting behavior" and as it is for the hydrodynamical equations it is 
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expected to be valid only in the limit when the gradients become very 
small. The above argument is mathematically formulated as follows. Let 
p(():N-->[0, 1] be a given "smooth" function. For e ~(0,1]  let ~ be a 
probability measure on {0, 1} z so that for every n, x 1 . . . . .  x~, ~ ~ R: 

l iml l~(~(xi  + [ e - I ~ t )  = 1, i =  1 . . . . .  n}) 
e ~ O  \ k x 

- - 1 ,  i - -  1 . . . . .  n ) ) l  = o 
(2.2) 

[ a ] = integer part of a 

The states /~ have essentially the same local structure when observed at 
rescaled regions, namely, e ach /~  around e-l~ is approximately Bernoulli 
(i.e., in equilibrium) with parameter p((). As e goes to zero the gradients 
become smaller and the state closer to a real equilibrium. 

The hydrodynamical scaling property states that there should exist a 
function (time scaling) 

t(e,r)  : (0, II • N+ --> R+, t(1,r)  = r 

strictly increasing in ~- and decreasing in e such that the following holds. 
There exists a smooth function p(~, r) independent of the choice o f / ~  but 
only on p(.),  such that for all n, x~ . . . .  , %, ( E R, r ~ R+: 

liml/,,}~,~)({~(x * + [ e - ' ~ ] )  = 1, i - -  1 . . . .  , n } )  
e - + 0  

-ve(~,~)({~l(xi) = 1, i =  1 . . . . .  n))[ = 0 (2.3) 

Property P.2 holds for the simple exclusion process (under some further 
assumptions on the "sequence" /x'; cf. Section 3) with the choice tie, r) 
= e-2r and p(~, r satisfies the heat equation with initial condition p (4) (see 
Refs. 1 and 2). 

Remarks. For each e the local equilibrium structure of /~ is not 
unambiguously described byp(x ,  t t ~t'); cf. P. 1. However, the hydrodynam- 
ical limit in Eq. (2.3) removes this ambiguity and determines the limiting 
hydrodynamical (smooth) profile p (~, r). 

The choice t(e,r) = e-2r is determined by the absence of drift in the 
simple exclusion process, otherwise a dependence like e-~r would be 
expected. 

Property P.2 provides a derivation of the hydrodynamical equations 
starting from the microscopic structure of the system. 

The variables ~, r are usually referred to as "macroscopic space and 
time," respectively. Reason is that they represent space and time before 
rescaling, e -- 1, and that the rescaling should be considered as a tool to get 
hydrodynamical behavior in a sharper way'. The limit as e--> 0 is called the 
hydrodynamical limit, and like the thermodynamical limit in statistical 
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mechanics should be regarded as a mathematically useful idealization of 
the "real" behavior of the system. 

P.3. Stationary Local Equilibria. The typical physical case is that of 
a system in a bounded region, the walls are in thermal contact with 
reservoirs, a temperature gradient is established throughout the system, and 
a stationary heat current flows into the system. 

In the simple exclusion model we restrict the available space to the set 
- L , . . . ,  L; we modify the process at the sites + L by saying that after a 
"Poisson time" of mean 1 a birth and death process occursJ l) Namely, 
with probability p+ a birth sign occurs at L and it creates a new particle 
(nothing happens if a particle was already at L). With probability 1 - p + a 
death mark appears and a particle, if present at L, disappears (nothing 
happens if L was empty). The same occurs at - L with probability p_  and 
1 - p  . The "source" at L forces the system toward equilibrium with 
parameter p + ,  that at - L  toward p . Let /~L be the unique invariant 
measure for this process(I); then P.3 demands that for all n, x 1 . . . . .  x n, 
~ ~ ( - 1 , 1 ) :  

lim [/XL({7/(X i + [~L]) = 1, i =  1 . . . .  , n ) )  
L----~ ~ 

-~,e(~)({~/(xi) = 1, i =  1 . . . . .  n})]  = 0  (2.4) 

for p(()  smooth function. P.3 holds for the simple exclusion model with p(~) 
linear smooth between p_  and p + ,  in agreement therefore with P.2 (cf. 
Ref. 1). 

We have so far investigated the macroscopic properties of the system, 
and, in a way, we have only studied the "thermodynamics" of the model: 
the aim was always to recognize the equilibrium parameters which better 
describe in each region the state of the system, the local deviations 
disappearing after suitable limits: t o  m in P.1, e ~ 0  in P.2, and L ~  m in 
P.3. The next topic to study is the "statistical mechanics," namely, the 
correlation functions and the local structure of the state: since this is in 
equilibrium at, let us say, zero order, the hydrodynamically interesting 
information requires a first order-correction analysis. The aim is to link the 
local deviations to the macroscopic equilibrium profile via the microscopic 
structure of the model. A physical example is the Fourier's law: a local 
observable as the heat flow, describing a local deviation from equilibrium 
where no steady current is present, is proportional to the temperature 
gradient, a macroscopic quantity, via the conductivity coefficient, i.e., one 
of the characteristic features of the system. 

The purpose of this paper is to offer a contribution along this line; the 
results until new material is available (to be hopefully provided by the 
analysis of other models) and their interpretation are therefore at a rather 
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provisional stage. Our presentation will be rather informal and qualitative 
in this section; precise statements are given in the next one. 

We start considering the time-dependent case; cf. P.2. A possible 
choice for the initial measure/z ~ is a Gibbs state with fixed translationally 
invariant two-body interaction (exponentially decaying) whose strength is 
given by a factor which vanishes as e goes to zero: it is important to notice 
that any speed for such convergence is allowed. The one-body term is 
adjusted so that Eq. (2.2) holds, i.e., as c vanishes /z ~ determines an 
equilibrium profilep((). More general cases are actually treated (see Section 
3) but we think that the above keeps the main features of what we want to 
describe. 

After a time e-2r, r > 0, the state is again locally Gibbs. The Hamilto- 
nian is purely one body if terms of order e are neglected and local 
equilibrium is reached, as was described in P.2. Deviations from this 
behavior appear at order e. For small values of T they are described by a 
linear microscopic space-dependent one-body potential. Even though the 
relevant contribution to the correction at time ~- = 0 might arise from the 
correlations due to the two-body interaction, they completely disappear in a 
microscopic time, i.e., for any r > 0. The e-small space-dependent one-body 
potential is responsible for a non-zero average current flowing in the 
system, which is stationary with respect to microscopic time since the state 
changes only in the macroscopic time scale of r. The present picture 
explains in which sense flows could occur in a system whose stationary 
states do not have nonzero average currents. 

The value of the average current is proportional to the intensity of the 
e-dependent one-body potential, i.e., to the equilibrium profile gradient at 
that space and time, so that Fourier's law is satisfied in this model. We 
remark that the system'is not macroscopically stationary; however, Fou- 
rier's law holds at each time. Even though usually stated for stationary 
cases, it is often used in the derivation of hydrodynamical equations (as for 
the heat equation ) also in nonstationary situations, and this model provides 
a microscopic justification for this procedure. 

The origin of the one-body potential is quite clear. The initial correla- 
tions in the states/~,'-2, are disappearing; therefore we define 

t; e) = = 1})  (2 .5)  

Then a good approximation for/~,~ at t = e-2r and r small is expected to be 

, : ~ e x p  ~xlOg 1 -  Tr(x,t;e) ~(x) + log[1 - ~r(x,t;e)l (2.6) 

The right-hand side of Eq. (2.6) is a formal writing for the product of 
independent measures for each ~(x), with averages given by Eq. (2.5). By 
limiting the sum to x in A (bounded) Eq. (2.6) is well defined: we 
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approximate ~r(x + [c-1~],e-2~-; e) with p(~ + Ex,~-) in agreement with P.2; 
then we expand p(~ + Ex, ~-) around p(~,'r) and we derive from Eq. (2.6) the 
one-body potential. 

As the macroscopic time ~- increases, correlations build up in the 
system and a two-body potential adds up to the previous one. This new 
Gibbs factor for a region A fixed around [e- 14] reads as 

exp ~.y l x~y2 [Tl(X)--p][Tl(y)--p]}, p=p(~,~-)  (2.7) 

x,yEA 

Notice that up to order c this factor does not change the average value of 
~/(x) and that compatibility holds (up to order e), namely, that the state for 
a region A' ~ A agrees on (v/(x),x ~ A} with the state for the region A. ~, 
in Eq. (2.7) depends on ~ and ~-, as we will see in more detail below. The 
interaction given by Eq. (2.7) is of a macroscopic nature, since it does not 
decay on a microscopic scale, and A is fixed as e goes to zero. 

As ~- increases the above hydrodynamical approximation fails and 
~r(x, c-2~'; E) is not anymore close to p(ex, ~'). However, Eq. (2.6) holds and 
gives a uniformly good approximation for all t as c goes to zero (cf. Note 1 
at end of paper) and the assumptions we made on the sequence/~'. It may 
also be easily seen that 

t ;  - t ;   -'/21x - y l  

and therefore an approximate local equilibrium structure holds at all times 
and becomes uniformly more accurate as e goes to zero. 

In the stationary case, P.3, the same picture holds. As L diverges a 
linear local equilibrium profile appears. Its local deviations are of order 
L-~ and are described by one- and two-body potentials. The former is 
linear in space, the same as the one in the time-dependent case; the 
two-body term also looks like the one in the time-dependent case, its 
strength being determined by the equilibrium profile, i.e., the values of the 
parameters at the boundaries (cf. Note 2). 

We conclude this section with some remarks which show the connec- 
tion between our approach and the scheme developed in Ref. 3 and which 
somehow clarifies the origin of the two-body potential we have been 
discussing so far. The aim in Ref. 3 is to introduce observables, hereafter 
called fields, whose values reveal the equilibrium profile structure exhibited 
by the system. The natural candidate, of course, is the particle density in a 
large region, whose distribution values at equilibrium become peaked 
around the equilibrium parameter as the size of the region increases (law of 
large numbers). For this reason one introduces the density field 

p'(f,r) =, ~], f(,x)~(x,e 2r) (2.8) 
x E Z  
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for f ~ | the Schwartz space of rapidly decreasing C oo functions. The 
analog of P.2 is that the so-defined field converges as e goes to zero to a 
deterministic field, namely, for all 6 > 0: 

!im/z~({ p~(f,r)- f(~)p($,r) < 8  }) = 1  (2.9) 

where p(~, r) is the same function as that defined in P.2 (Ref. 3). Notice that 
Eq. (2.9) can be derived independently of the previous considerations and 
p($ r) and the hydrodynamical equations obtained without going through 
P.2: in that case p($~-) cannot be interpreted as a local equilibrium 
parameter and it happens that no local equilibrium structure holds even 
though Eq. (2.9) is satisfied. (n) Quite naturally the next object to study is 
the density fluctuation field, namely, 

~-~(f,r) - - ~  E f(ex)[rl(x,c-2r) -E~'(~(x,e-zr))] (2.10) 
x E Z  

This has been done in Ref. 3 (their results have been obtained before this 
paper was written and we are deeply indebted to the authors for keeping us 
informed on progress along this line as it appeared) where it was proven 
that as e goes to zero the fluctuation field becomes Gaussian. Its covariance 
can be written as 

where C, is an explictly given smooth function. 
We now come back to our approximation scheme. We need a stronger 

version; we prove in fact that there exists a function 7~($,~) such that for 
each fixed n 

V 

sup e '//x,%,({~/(xi) = 1, i =  1 . . . . .  n)) lim 
E - ~ O  X l  , . . . , X n 

- exp ~ log rl(xi) 

+e-~ 

X ( 2 q ( X j ) - - V ( X j  ,E-2'r; E))}] = 0 (2.12) 
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Choosing x i = [~-14] + x~ with x~ and 4 fixed we recover the previous case, 
and so ~,~ in Eq. (2.7) is equal to 7~(~,(). On the other hand, by Eq. (2.12) 
we can easily compute  the covariance of ~-~(f, ~-) and we find in the limit 
going to zero that y , ( 4 , ~ ) -  C~(4,~). In particular, therefore, the value of 
the interaction strength "7~ is the value on the diagonal of the smooth part, 
C~(4, 4), of the covariance of the macroscopic  density f luctuation field. 

A final remark: the covariance C,(4,~) obeys a "natura l"  equat ion 
given by the martingale condit ion for the fluctuation field and can there- 
fore be computed  directly without going through the above approximat ion 
scheme. 

3. RESULTS 

The  simple exclusion process (13) is the Markov process with state space 
{0, 1 }z and generator  L which acts on the cylindrical f u n c t i o n s f  as 

( L F ) ( ~ )  = (1 /2 )  2 [ f ( ~ ( x , x  + 1)) - f ( ~ ) ]  
x @ Z  

( ~ l ( x , x  + 1))(x) = ~/(x + 1), ( , ( x , x  + 1))(x + 1) = ~ (x )  (3.1) 

( n ( x , x  + 1))(y)  = ~/(y), y =/- x, x + 1 

Definition 3.1: Local Equilibrium. We say t ha t /~ ,  e ~ (0, 1] defines 
a local equilibrium structure with parameter  p (4) if the following conditions 
hold: 

H.1. p(~):R--~[0,  1] is C 3 and all derivatives up to third order  are 
uniformly bounded.  

H.2. lim~__,0supx~ze -11 /~ ( (n (x )  = 1}) -p( x)l = 0. 
H.3. There  are functions % : N - ~ R + ,  n = 2 , 3  . . . . .  such that (i) 

~x~Z%(Ix ] )  < + ~ and (ii) for all positive integers k l, k 2 and x~, < �9 �9 �9 
< Xl < Yl < " " " < Yk~ the following holds: 

I /L'({~(xi)  = 1, ~l(yj) = 1, i = 1 . . . . .  k , , j  = 1 . . . . .  k2} ) 

- / ~ ( { , ( x i )  = 1, i = 1 . . . . .  k , } )  

• #~({~/(yj) = 1, j  = 1 . . . . .  k2})l ~< Wk,+k~(tXl -- Y,I), W ~ (0, 11 

H.4. For  every k E N, xl, . . . ,  xk, the following holds: 

lira sup I/x'({~/(x, + x) = 1, i =  1 . . . . .  k})  - p k ( e x ) l  = 0 
e--~0 x E / /  

Theorem 3.1. Assume that /~ defines a local equilibrium structure 
with parameter  p(4); see Definit ion 3.1. Let p (~, ~-) be the solution of 

1 ~2 
~ P ( ~ ' ~ ) -  2 0~ 2p (4 '~ ) '  P ( 4 ' 0 ) = P ( 4 )  
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For every ~ E R, T > 0, A bounded, and ~a = { ~ , x  ~ A} E (0, 1} IAi, define 
for p (4,1-) ~ O, 1 

1 ~,,,A(~A) = ~ a x ( ~  -- #)  + -~ ~ 7~ (~  -- p)(~y -- p) (3.2) 
x ~ A  x ~ y  

x ,y~A 

a -  p(1 - p )  p' '  p =p(~, ' r ) ,p '  = p(~,r)  (3.2a) 

v~ = v~(~,~), 
(3.2b) 

1 1 
"7~(~,~) : p(~,~)[1 -p(~,~-)]  p(~ ,z) [1  -p(~ ,~- ) ]  Y~(~'~) 

<- n: ~(~,,)= f dxdy~(x, yl~,,)[ p'(x)p(y)-#'(y)p(x) ll(x > y )  

x,~_o(~, ,  ~ I ~, u)#"(z,)p(~2) (3.2c) 

1 exp{-  F(u- + 

Then 

l i m e - ' [ / ~ : ~ ( { ~ / ( x + [ e  ' ~ ? ) = r t ~ , V x E a } )  
e---~0 

- pp(~.~)({~(x) = ~ ,  Vx ~ A})exp(e%,,,.A(~a)) ] = 0 (3.3) 

where ~ = e[e-'~]. Furthermore, for each n Eq. (2.12)holds. Notice that 
the restriction p(~,~-) # = 0, 1 can be left out by assuming that p(~, 0) is not 
identically 0 or 1. 

Theorem 3.1 will be proven in Section 5. 
As already remarked in Section 2, Eq. (2.12) was obtained when n = 2 

in Ref. 3 and ~,(~,~) is the smooth part of the covariance C(~,~) [see Eq. 
(2.11)] of the macroscopic limiting fluctuation field. 

4. THE C O U P L I N G  T E C H N I Q U E  

To prove the theorems of Section 3 we need good estimates on the 
simple exclusion process for finitely many particles (because the process is 
additive(13)). We compare it with the free one by introducing couplings 
between the two processes, different ones according to the property to be 
proven. They are all modifications of that introduced in Ref. 2 and are 
grouped together in this section. 
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We set n as the number of particles, x ( t )=  x l ( t  ) . . . . .  x , ( t )  [x~ 
= x~ . . . ,  x~ the position random variables in the interacting (free) 
process and x(0) = x~ = x : Px[P ~ their law. The main coupling process 
is Q and is defined by its generator ~, which acts on functions f(x, x ~ as 

l xo)) (~f)(X'XO) = ~ E 2 ( f ( x ( x i ' x i  "u Z i ) ' (  X O  . . . . .  X ? " [ -  Z i . . . . .  

i = l z i = + _ l  

- f (x ,x~  (4.1) 

X l  . . . X i _ l )  2 , . , X n 

X ( X i  , y )  : X 

X 1 . . . X j _ l Y  . . .  X j _ l X i  . �9 �9 X n 

if y ~ { X l . . . x , }  

if y ~ (X 1 . , .  X i _ l }  

if y =  x j , j  > i 

(4.2) 

The process Q starts at (x, x). The following properties hold (2'14) : 
R.1. The process Q is a coupling, i.e., its relativitation to the o 

algebra generated by the paths of the interacting (free) particles is the 
simple exclusion (independent) process for those particles. It defines a 
homomorphic mapping from the free onto the interacting trajectories; see 
also R.8 below. 

R.2. Free and interacting particles have the same displacements, 
unless this violates the exclusion condition: in that case the rule is given by 
Eq. (4.2). According to it we can write 

x i ( t  ) - xi~ = ~ Di,j(t ) (4.3) 
j < i  

where Di,j(t ) gives the contribution due to displacements of x~  ') - x~  ') 
which would have taken xi( t '  ) and xj(t') onto each other; here 0 < t' < t. 

R.3. The Q process relativized to the o algebra generated by the first 
k free and interacting particles is the same as the process defined for only 
those k particles, disregarding the others. 

R.4. x l ( t  ) = x~ at all times. 
R.5. The defintion of Q is asymmetric on the labels of the particles: 

the smaller are matched "better" than the others. To compare paths of 
given labeled particles it is therefore convenient to introduce couplings Q", 
where ~r is a permutation ~r(1) . . .  7r(n) of 1 . . . . .  n. In Q~ the role of 
particle j is played by l: ~ r ( l )= j  so it is particle i:  er(i)= 1 in Q~ which 
moves the same in the two processes. 

We will need estimates on ]x/(t) - xj(t)[ in terms of [x~ - x~ It is 
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convenient to introduce the coupling Q whose generator ~ is 

xO) = 2 + .i),(xO,...,: + :i .... , 
i = l z i = + _ l  

- f ( x ,  x ~ } (4.4) 

where 

x(x, ,~i + zi) = (x2 , x l , x 3  . . . . .  x . )  

if x i + z i = x j ,  ( i = l , j = 2 )  U ~ i = 2 , j = l )  (4.5a) 

x(xi, ~ + zi) = x(xi, x~ + zi) in the other cases (4.5b) 

R.6. The mapping defined by {~ is such that (i) x, < x 2 if x ~ -<< x ~ 
and x~ > x2 if x ~ >/x ~ (ii) 0 < [xl(t ) - x2( t ) l -  [x~ - x~ < 1. Prop- 
erty R.3 for k/> 2 holds also for Q. 

R.7. The main probability estimate. For every c~ > 1/4 there are A' 
and A > 0 so that 

Q ( { [ x i ( t ) - x ~  t~,i = 1 . . . . .  n, Vt >1 T ) ) >  1 - a ' e x p ( - A T  ~-'/4) 

(3.6) 

Equation (4.6) holds also for Q~, Q, Q~. 
For notational convenience we define "marks" as random variables in 

the coupled process: 
R.8. For x E 7, t E R+, Mx,~ + l( t ) is defined as 

M~x+~(t) = 1 i f3 i ,  j : x ~ ( t ) = x ,  x j ( t ) = x + l  l i m x . ~ t ' ~ = x + l  
' ' f f ' ~ l  t \ : 

M x , x + l ( t ) = - - I  i f3 i ,  j :  limxi(t '  ) = x i ( t  ) = x ,  l i m x J t % = x j ( t ) = x +  1, 
t "~t  " t "~t  J ~ : 

[x~ (,'),4(,') l *[ :(,),4(,)1 
Mx,~+ l(t) = 0 otherwise 

The random variables Mx,~+ l(t), x E 2~, t E •+ define the so-called "marks 
process." It is easy to see that any of the couplings Q~ and 0 ~ induces the 
same law on the simple exclusion "marked" process, hereafter called the 
completed interacting process, no reference to the free one being needed: 
the couplings then define isomorphic mappings between the free and the 
completed interacting process. We will call the trajectories in the latter 
complete trajectories. 
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R.9. Like the simple exclusion also the completed interacting process 
is additive. Namely, if ~- c { 1 , . . . ,  n } the process of the particles in ~- and 
of those marks which only involve particles in ~- is just the same as only the 
~- particles were present. 

5. P R O O F  OF T H E O R E M  3.1 

We first prove that the initial correlations decay in a microscopic time, 
namely, let g '  be the Bernoulli measure on {0, 1} z such that 

~ ( ( ~ ( x )  = 1}) = / ~ ( ( ~ ( x )  = 1}), VxGT/  (5.1) 

Then we have the following: 

T h e o r e m  5.1. Let the assumptions H.3 and H.4 of Section 3 hold. 
Then for every n, x l  . . .  x n, ~- > 0, the following holds: 

l imE- '  sup l # : 2 , ( ( ~ ( x  ̀  + x ) - -  1, i = 1 , . . . ,  n}) 
e--~O x ~  

- ~ ; ~ ( { ~ l ( x  i + x )  = 1, i = 1 . . . .  , n ) )  I = 0 ( 5 . 2 )  

P r o o f .  For notational simplicity we pose x = 0, the estimate being 
uniform in x E 7/. Let P• be the law of the simple exclusion process for 
particles starting at x = x 1 . . .  xn; then by duality Eq. (5.2) is reduced to 
the proof that 

lim V(c, 7/") = 0 (5.3a) 
e--~0 

ex({x(t)  = z}) 
z ~ A  

A C 7/~ : V ( E , A )  = e -1  

/~c({~(zi) = 1, i =  1 , . . . ,  n) )  

1 
- I t  /x~({~(zi) = l ' i =  1 . . . .  , n} )  / (5.3b) 

i = 1  J 

t = c 2~ (5 .3c)  

For i 1 v ~ j l ,  i2:/=j2,  C a r d ( i j , j l , i 2 , j 2  ) /> 3 and i l j l i 2 j  2 in the set {1 . . .  n} 
for �89 > a >�88 define 

A ( i i j , i 2 j 2 )  = (z ~ 2 n : Izi, - zj,] < ]z i2  - Zj2 [ • ]Z k - -  Zk.[, V k  ~ k ' ,  

( k , k ' )  :/=(il, j ,  ) and [zi, - zj,[ := l, < t ~, ]zi2 - zj.[ : l 2 ~< t ~ } 

Writing in the following equation A for A ( i l j l i z j 2 )  we have for c and c' 
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large enough 

IVff,A)[ < e- ' c  ~,, Px((X(t )=  z})~.(l~) 
z E A  

<. , - 'c  2 N e.({lx,,(t) - x j , ( t ) [  = l~,Ix~(t) - xy~(t)l = t 2 } ) ~ ( t , )  
l l  ~ t a  t2 <-<. t a 

< r  2 2 % ( t , )  + c - ' c ' A ' e x p ( - A t  ~-1/4) 
l I ~<2t a 12<2t a 

~< el-2'~c'3"r-'+'~ 2 %(x)  + e - ' c ' A ' e x p ( - A ~ ' " - ' / 4 e  -2(~-'/4~) (5.4) 
x~>l 

where H.3 and the definition of A have been used to get the first inequality; 
the third one is derived using the coupling 0 r with w(il) = 1, w(Jl) = 2 (see 
Section 4, R.6) and Eq. (4.6) and well-known estimates for free particles. 

Let B(I,2) be the set in ~" disjoint from all A( i l , j l , i 2 , j 2 ) ' s  and such 
that ]z i - zst >/]zi - z2] for all i =/=j. For every 7 > 0 define L(~,) so that 

2 ,p,,(x) < ~, (5.5) 
x ) L(~/) 

and let r be such that t ~ > L(7). Then for e,c'  large enough 

t V(,, B(1,2))] 

< c-'c E E ?~((x(t) = z)),p.(z) 
1/> L('D z E B ( I , 2 )  

tzl- z2l=t 

+c-~c  E 22 ex((X(t) = z}) 
l <  L(y) z E B ( t , 2 )  

t z~ - z2t = t 

x { ~.(m +~>~ .'((~(zi)= l)) 

• ~((~(z , )= 1,i = 1 ,2)) -  11 ~.~({~(~)= 1)) 
i = t  

< r162  e- lL(~ ' )  c'r 

t "  

x t%(~-2~r ") + s u p  

t ZI@Z2 
lz, - z~l < L(V) 

I l/x~((rt(z;) = 1, i =  1,2)) 

2 ) )}  - 17 ~~ I 
i = I  

(5.6) 
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where the coupling (~ (see Section 4, R.6) has been used. By assumption 
H.4 the last term in curly brackets vanishes as e ---> 0 so that the contribution 
of V(e,B(1,2)) is also arbitrary small. For B ( i , j )  we use the coupling Q~, 
~r(i) = 1, ~r(j)= 2 and the same estimate as in Eq. (5.6) is obtained. The 
theorem is therefore proven. [] 

The contribution which gives rise to the one-body potential is esti- 
mated in the following: 

Theorem 5.2. Let the assumptions H.1-H.4 hold. Define ~ as 

Then for every n, x l . . . . .  x, 

lime ' / [ / , ~ % ~ ( { ~ ( x , + [ e - ' ~ ] ) =  1, i = l . . . .  , n } ) - p ( ~  , r ) "  ] 
e-->0 [ 

= p(~, ~)"-'p'(~,~) ~ x, (5.7) 
i = l  

where P, [p0] is the law of n interacting (free) particles starting at x 1 + 
[e- i ~ ] , . . . ,  x. + [e- l~], p,(~, r) = (O/O~)p(~, r), and 

1 ~1/2 
p(~, ~) = ~olim E z p({ x(e-~) =z  } > ( <  = ( ~ ~ d~ e - ~ % ( x  + ~) 

(s.8) 
where P is the law of a single random walk starting at [e-1~]. 

Proof .  We use duality and Theorem 5.1. [] 

t .emma 4.1. We have that 

n 

lime - 1 __is 
i =  

= lira e - '  ~-~,, Q ( { x ( t )  = z}  { x ( t )  = z ' } )  
~ --->0 Z,Z' 

x ~ ,  l ]  : . -1 - ' ,  ' ] (5.9) 

where Q is defined in R.1, section 4, n i ~ {0, 1,2}, ~ '  is the sum extended 
to those {ni} such that 0 < ~ = l n i  ~< 2,p(~')(.) is the nith derivative of p( .) .  
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P r o o f .  Since Q is a coupling we can write 

limE-1 ~ [ P ( ( x ( t ) =  z } ) -  P ~ 1 7 6  z}) 1 ~I p ( e z , )  
r i=1 

= l i m r  Q ( ( x ( t ) =  z} ( x ~  z'}) 
E~'0 Z,Z" 

By R.7, Eq. (4.6), with �88 < a <�89 we can disregard those z,z' such that 
Iz i - zj[ > t ~ for some i. We now expand in e(zj - zi) and the third-order 
contribution behaves as 

s163  - 2T)as 

which is vanishing as e goes to zero, because a <�89 �9 

D e f i n i t i o n  5 . 1 .  Given ~- c {1 . . . . .  n} and t > 0 we define the stop- 
ping time T I on the completed interacting process (cf. R.8) as the first time 
before t when a nonzero mark occurs which refers to a pair of particles 
both in ~-; otherwise we put T 1 = oe. T 2 > T1, T 3 > T2, and so on, are 
defined analogously. Given a complete trajectory with T,~ < m we con- 
struct a new trajectory by changing the value of the mark at T m and by 
interchanging the role of the two particles (specified by the mark at T,,)  at 
times after T m. Notice that the stopping times (T~)ne v have the same values 
in the new trajectory. By iterating this procedure we define a measurable 
partition whose atoms are denoted by gt. d P ( g t )  is their probability 
distribution, g, fixes the trajectories of the particles not in g and up to 
permutation those in ~-. More precisely a trajectory belonging to gt is 
specified once the ordering at all times ( ~< t) of the g particles is given. The 
ordering might change only at the times T m with T m < oo, whose values are 
fixed since gt is given. We describe this by introducing random walks ~i, 
i ~ g on the set ( 1 , . . . ,  [~-J}. fi = u means that there are u - 1 particles in 
~- with position less than x i. For notational convenience we renormalize 
times; T/ becomes j and we agree to denote by ~ the time such that 
T~ < oo, T~+ 1 = m. Given s < ~ let x : Mx,x+l(Ts) =/: 0 and let l - 1 be the 
number of particles in ~- which have positions smaller than x (which only 
depends on gt). Denote by 6l,/+ l(s) or sometimes simply 6(s), the value of 
M x , x + l ( T s ) .  When 61j+l(s  ) = 1 at that time the ~" particles which are at l 
and l + 1 exchange their position; they do not if 61,l+l(S)= --1. The 6(s) 
are independent symmetric random variables; therefore given gt the process 
~'~(s), i ~ ~-, s ~< ~, is determined and gt together with a ~" trajectory fully 
determines a complete trajectory. 
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We denote by Og, (or simply 0 if no confusion arises) the law of this 
process, and given g~ we consider x(.) and x~ as random variables on 
such a process. 

In the sequel we will use the following notation: n~j(t) is the number of 
marks appearing within time t referring to particles i and j ;  for i > j ,  
X(Zi, zj)--- +1 if z i >1 zj, = - 1  otherwise. 

We estimate the right-hand side of Eq. (5.9) by conditioning to g,. A 
first estimate is given in the following (see Note 3): 

Lemma 5.2. Let f(z) be a bounded function and Di/(t ) as in Eq. 
(4.3). L e t / > j ,  l > m, ~-1 = (i ,J},  ~-2 = (1,m}, ~-1A ~-2 = O; then 

EQ(f(x( t ))Di , j ( t )  2) = EQni j ( t ) f (x( t ) )  (5. lO) 

Eo( f ( x ( t ) )Di j ( t ) )  = EQ 1(( ni,j(t ) >1 l )) f(x(t))X(x~(t) ,  xj(t)) (5.11) 

Eo(f(x(t))Di, j( t)D~,m(t))  = EQl((ni,j(t  ) >~ 1))l({nl,  m(t ) >i 1}) 

•  (5.12) 

IEQ(f(x(t))D~j(t)Dyj(t)) t  < 2l :ol f (x( t ) )  I (5.13) 

Proof. 
have after conditioning to g,. 

Proof of Eq. (5.10). Let ~" = { i , j } .  Define 

= [ 1 if ~z ( s -  1 ) > ~ ( s -  1) 
cp(s) / - 1 otherwise 

then 

The proof is based on the very simple expression the Di,j(t)'s 

(5.14) 

Di,j( t )  = -- E a ( S ) ~ ( S )  (5.15) 

n,,j(t) 2 = ni,j(t ) + ~ 8(s)q)(s)d(s')cp(s') (5.16) 
S ~ S  ~ 

EQ(f (x ( t )Do( t ) :  ) 

= f dP(g )E,(f( (O)[nij(O 

=fdF(g,)[,ij(,)Eo(j(x(,))) 
For s' > s 

E 6 s ~ p s d s '  q) s' x t  p( ( )  ( )  ( ) ( ) f ( ( ) ) )  

+ , s,E 

+ s .s '  ~ '  Ep(f(x( t ))6(s)q~(s)6(s ' )~(s ' ) )J  

= E  E 6 sep s 6  s'~p s ' f x t  o( o( ( ) ( )  ( ) ( ) ( ( ) ) l ( 6 ( " ) , " ~ s , s ' } ( 6 ( s ) 6 ( s ' ) } ) )  

= Eo(f (x( t ) )8(s)6(s ' )cp(s)E,(cp(s ' ) l{6(u ), u 4 = s,s '} (8(s )6(s ' ) } ) )  = 0 
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Proof of Eq. 5.11. We need to estimate Eo(-8(s)q)(s)f(x(t)): for 
s < ~, ~: t~+ 1 > t >/ t~ (see Definition 5.1) we condition to ( 6 ( u ) u r  
(8(s)6(~)), and as above the expectation vanishes. Since 

- = x(x (O, xAO) 
Eq. (5.11) is proven. 

Proof of Eq. (5.12). We first condition to gt defined with reference to 
~- = (i, j) .  Since Dt.m(t ) depends only on gt, we have as before 

EQ(f(x(t))Did(t)Dl, m (t)) = EQ(f(x(t))1({ ni,j(t ) >~ 1 })X(xi(t), X](t))Dl,,~ (t)) 

and from this Eq. (5.12) is obtained by using the same procedure as in the 
proof of Eq. (5.11). 

Proof of Eq. (5.13). ~-= ( i , j , l ) .  cp(s )=0 if 8(s) does not involve 
particles i and j ;  otherwise it is defined as in Eq. (5.14). +(s) is defined like 
~0(s) with reference to particles j and l. We need to estimate Ep(f(x(t)8(s) 
q)(s)6(s')+(s')). Assume s > s'. We first consider the trajectories for which 
(i) Iq0(s)] = 1 and (ii) 3v  > s : Iq~(v)] = 1 and cp(v') = 0 for s < v' < v. This 
set can be partitioned in pairs of trajectories by fixing 6(u) for all u ~ {s, v} 
and the product 6(s)8(v). As above the conditional expectation with 
respect to this partition of 6(s) vanishes (x(t), 6(s'),t~(s'), ep(s) are fixed in 
each atom). The remaining trajectories are divided into two sets. The first 
one is defined by the condition that (i) [~(s')I = 1 and (ii) 3 v ' :  s > # > s', 
[~(v')l = l, p(v") = 0 for v' > v" > s'. This set is also partitioned in pairs 
by fixing 6(u) for u q~ {s',v'} and the product 6(s')6(v'). Just as before the 
conditional expectation of f(x(t))8(s)~(s)6(s')~.(s') vanishes. Denote by 
C(s, s') the other trajectories; then we have 

,:o(If(,<(,))l 2 Eo(ll(x(,)) l)  
i 

since = n = = o . / f  
(s",s'"). This is so because if s" > s and a trajectory is in C(s,s') and 

lep(s)l = 1, then it must be q~(v) = 0 for all v > s and in particular qg(s") 
= 0. Therefore we are reduced to consider cases with s = s". Assume 
s'" > s'; then if a trajectory is in C(s,s') and I~(s')l = 1 it must be +(v') = 0 
for all s > v ' >  s', and in particular ~ ( s ' " ) =  0 since s ' " <  s " =  s and 
s '" > s' by assumption. �9 

We now proceed to the estimate of Eq. (5.9) by use of Lemma 5.2. The 
term in Eq. (5.11) is treated in the following: 
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Lemma 4.3. Let f be a bounded function with bounded derivative 
and denote as before t = ~-2~.; then 

~-~olim[ f dQ f(cx(t))X(xi(t) 'xj( t)) l((ni ' j( t)  >~ 1}) 

_ = 0 

Proof. We can eliminate the condition hi, j ~ 1 s incef is  bounded and 

fdQl({nij(t)=O})=fdO~l((x~ x~ < t '~  t)) 

=fdp~ 4(t ' )  0 < c <  ,}),_~>0 

where 0 "  is defined in R.5, Section 4, with v(i) = l, ~r(j) = 2. By definition 
of 0 ~, see R.6, Section 4, X(Xi(t),xj(t)) = X(X~ if x~ ~ xf(t), so 
we have 

= lira (dQ ~ f(cx(t))IX(X~ x~ lim ( d  0 ~/(r t))x(xi (t), xj(t)) ~ o  d 
~--~0 J 

x 1( ( Ix , ( , )  - x ~  < to, t =  1 . . . . .  , } )  

lim ('dQ ~ ((x ~ t X(x~ t ,  =~->oJ f" ()) " ()x~ 

• l((Ux,(t ) - x~ < t~,l  = 1 . . . . .  n)) 

where R.7 with �88 < a < �89 has been used to get the second equality; and 
the last one follows by noting that 

S ( ~ x ( , ) )  = / ( ~ x O ( , ) )  + ~ ( x ( , ) -  x 0 ( , ) ) , ( ~ x O ( , ) )  

with ~b bounded and 

I ~ ( ~ ( 0  - ~~  < ~t ~ = ~ : ~  []  

Lemma 5.4. L e t f a s  in Lemma 5.3 and t = E-2~ -. Define n~ in the 
free process as Card((t '  ~< t:  x~ ') = x~ then 

l im/( 'dQen,  (t)f(cx(t)) - f dP~176176 = 0 ~--,o ~ 3 'J 

Proof. We first notice that 

lim sup f dQ ~n,j(~-2. 0 < oo, 
~--~0 

limsupfdQc2n3(r < oo (5 .17)  
e---~0 
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This can be obtained using the coupling 0 F, ~r(i)= 1, ~r(j)= 2 since 
nij(t ) < 2n~ and then the estimate is reduced to the corresponding one 
for free particles. We will need a more refined estimate than nij(t ) << 2n~ 
in the sequel, to prove the lemma. We have 

lim(f dQ,niAt)f(,x(t))- f (5.18) 
Equation (5.18) is obtained by first introducing l({Ixi(t ) - x ~  < t"}), 
i = 1 . . . . .  n; 1 < a <�89 the error being negligible because of Eqs. (4.6) 
and (5.17) (Schwarz's inequality has been used). Then, as in the proof of 
Lemma 5.3, by using Eq. (5.17), f(~x(t)) can be changed into f(ex~ 

We can write the integral over d O" as an integral over dP ~ by 
considering n~j(t) as a random variable in this space (see R.6 and Section 
4). We then introduce the set of trajectories gO, which differ from one 
another only by a permutation of x~ and xf(.);  d P ~  ~ denotes the 
corresponding law; 0~ (or simply p ~ is the law of the process conditioned 
to 2 .  Given gt ~ the times t' ~< t are determined when x~ ') = x~ ') and we 
denote them as t 1 . . . . .  t~. We remark that x~ n < g, is a function 
constant on gO. Given gO we write ni,j(t ) = nij(t~) + nij(t ~, t), where the last 
term denotes the number of collisions of the interacting particles after t~ up 
to t. Therefore 

; d Q  ~ en,.j(t)f(ex~ = f dP~  g?)Eoo('(ni,j(l~ ) dr" ni,j(t,,t))f(f-xO(t))) 

= fdeo( o Eoo(,n, (t )Eoo(Z(,xO(O) i 

+ f d P  ~ eni,j(t~,t)f(ex~ (5.19) 

The last term vanishes as e@0 because n~j(t~,t)< 1 by definition of 0 ~. 
Then 

limfdO eni,j(t)f(ex~ - f d P ~  gt~ ('~)) 

• = o 

because as already remarked x~ depends only on gO. It is easy to see, 
from definition of Q~ that 

Proof  of  Theorem 3.1. By Theorem 5.2 and Lemma 5.1, the theo- 
rem follows from the evaluation of the limits in the right-hand side of Eq. 
(5.9). 

We can rewrite the terms like e(z i - z'i) and eZ(zi- z;)(zj - z/i ) using 
Eq. (4.3), and Lemma 5.2. The terms with Di,jDz, m have a factor e and their 



Smal l  Deviations from Local Equilibrium in Hydrodynamical Systems. I 77 

expectation vanishes since f as given in Eq. (5.9) is uniformly bounded. 
From Eqs. (5.10) and (5.11) it follows that only the terms with Dij and Di} 
give a finite contribution in the limit e--> 0. 

From Eqs. (5.9), (5.11), and Lemma 5.3 the first term in Eq. (3.2c) is 
recovered; the second term is given for i > j by the limit as r goes to zero of 

o (5.20) 

We can rewrite Eq. (5.20) in discrete time by looking at the times when 
particles move. The number of steps, m, is distributed with a Poisson law of 
intensity 2, denoted by P(m; t), and, given m, xi(k),x2(k ), k = 1 . . . . .  m, 
are independent symmetric random walks with only one particle moving at 
a time. In this scheme n~ is given by the following: 

ft~ 
given m: ni~ = ~ ~2 l ( ( x , ( k )  = u, x2(k ) = u))  (5.21) 

k =  1 u ~ Z  

and so 

f dP~176 ~ P ( m , t )  ~ ~ r 
m k ~  l u ~ Z  

• 2 P2~(z~,z2; m - k)f(ez,,ez2) (5.22) 
ZI,Z2 

where 2 , , .  Ps n) is the probability that after n steps the two particles 
starting from xl, x 2 are at x'l,x ;. We write t = e-z7, m = e-2rh, k = e-2k, 
u = c-t27, z i--- e - I~ ,  xi = r  x~ and then it is easy to see that the 
right-hand side of (5.22) converges as E goes to zero to the second term of 
Eq. (3.2c) with ~ = ~/. B 

Remark. Equation (2.12) can be easily derived from the previous 
theorem. In fact, we have to evaluate, t = e-27 

n 
I I  = 1) 

z i=1 

4- i=lfigr(xi't;s (5.23) 

where ~r(x,t;e) is defined by Eq. (2.5) and p[pO] is the law of the 
interacting (free) process starting on x = (x 1 . . . . .  x,). 

We approximate/,~01(zi) = 1) with p(ezi), and after an expansion as in 
Lemma 5.1, the terms which give a nonzero contribute to the limit are like 
in Eqs. (5.10) and (5.11) of Lemma 5.2. They can be estimated as in 
Lemmas 5.4 and 5.3, respectively. The only difference is that it is not 
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possible to eliminate the characteristic function 1 (ni,j(t) > 1) as in Lemma 
5.3 because in this case particles i and j might start from far apart. 

6. NOTES 

Note 1. For case of reference we quote here the results concerning 
the approach to equilibrium and local equilibrium for the symmetric simple 
exclusion process. (1'2'13) Define for 77 E {0, 1} ~, x E Z, t ~ R+ 

~ ( x , t , ~ )  - 1 
(2qr)t 1/2 yeZ2 ~I(Y) e-(y-x)2/2t  

Then we have the following: 

Theorem.  /t t : TAx converges weakly to u iff 7r(0, t, 7) converges ,u-a.s. 
as M'oc; in such a case let p(~/) be its limit, then 

P 

(pp as usual denotes the Bernoulli measure with parameter p.) /z t exhibits 
local equilibrium behavior in the sense of P.1 iff there exists a function 
p(x ,  t [ iz), x E Z, t E ~+ such that for every 6 > 0 

lim sup /~(([Tr(x, t, ~7) - p ( x ,  t l ~)l > 6 )) = 0 
t ---> oo x E Z  

It is easy to see that if the average 1/(2n + 1)~lxl<n~/(x ) converges topOI) 
as n diverges then ~r(0, t,7/) also converges to p(~/). A sufficient condition 
for local equilibrium to hold is the following one: for each n ~ N there is a 
positive decreasing function % ( x )  x ~ N, limx_,~%(x ) = 0 such that for all 
n ~ N, (x 1 . . . . .  x~) E Z n 

/ ~ ( { ~ ( x i ) = l , i = l  . . . . .  n } ) -  f l  /~({~/(xi)}) < % ( m i n ] x  i - x J [ )  
i = 1  \ Xi-~ XJ 

Note 2. The results and proofs for the stationary case are given in 
Ref. 15. The proof appearing in a preliminary version of this paper (16) was 
wrong. To fix it we have been forced to use rather different techniques and 
this is the reason why we present the results in two joint papers. 

Note 3. The estimates in Lemma 5.2 can be used for a direct proof 
that the fluctuation field converges to a Gaussian process (cf. Ref. 3). We 
can show that the moments of the fluctuation field converge to the values 
given by the limiting Gaussian field. 
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